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Abstract. A nonlinear viscous damper is a type of damping device used in engineering to dissipate energy and 

reduce vibrations in structures. Damping is essential in many engineering applications to control the response of 

structures subjected to dynamic loads, such as earthquakes, wind, or machinery-induced vibrations. In a nonlinear 

viscous damper, the damping force is not directly proportional to the velocity of the structure, which distinguishes 

it from linear viscous dampers. The nonlinearity in the damping force-velocity relationship can be designed to 

provide specific performance characteristics. The main reasons for employing nonlinear viscous dampers include 

increased energy dissipation – nonlinear viscous dampers can provide higher energy dissipation compared to linear 

dampers, making them effective in controlling larger vibrations. This work deals with numerical analysis of a 

single degree of freedom dynamical system representing plate-flow interaction with quadratic drag force subjected 

to harmonic excitation with and without additional impacts during oscillations. Numerical analysis is based on the 

bifurcation theory. The theory focuses on understanding the qualitative changes in the behaviour of a system as a 

parameter is varied. Without additional stoppers the system behaves as a linear system. With “soft” stoppers the 

system gets limited displacements with the same velocities, multiplicity and more uniform distribution of 

amplitudes of oscillations. Understanding bifurcations is crucial in predicting and controlling the behaviour of 

dynamic systems, especially when dealing with nonlinear phenomena.  
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Introduction 

Energy harvesting, the process of capturing and converting ambient energy into usable electrical 

power, faces several challenges that hinder its widespread adoption and effectiveness. Some of the 

biggest problems in energy harvesting include: low energy density; variable and unpredictable sources; 

efficiency and conversion efficiency; miniaturization and integration; environmental constraints; cost 

and scalability; energy storage and management; standardization and interoperability. Addressing these 

challenges requires interdisciplinary research efforts, including material science, electrical engineering, 

mechanical engineering, and computer science. Advances in materials, fabrication techniques, energy 

conversion technologies, and system design are essential for overcoming these barriers and unlocking 

the full potential of energy harvesting for sustainable power generation. This paper deals with “plate-

flow” system design enhancement. 

“Plate-flow nonlinear interaction” typically refers to the interaction between a vibrating plate (such 

as a structural plate) and a fluid flow (like air or water) surrounding it, where both the plate vibrations 

and the fluid flow influence each other nonlinearly. This phenomenon is of particular interest in various 

engineering applications, including aeroelasticity, hydrodynamics, and structural dynamics. 

Understanding plate-flow nonlinear interaction is crucial for designing structures that can withstand 

dynamic loading conditions and optimizing control strategies to mitigate adverse effects such as fatigue, 

vibration-induced noise, or structural failure [1-3].  

Analysing plate-flow nonlinear interaction often requires advanced computational tools and 

experimental techniques, such as computational fluid dynamics (CFD), finite element analysis (FEA), 

wind tunnel testing, and fluid-structure interaction simulations [4-6]. The method suggested in [7; 8] 

allows performing tasks of analysis, optimization and synthesis in the interaction of objects with fluids 

in a simplified way. It is a single-degree-of-freedom system consisting of a plate, spring, energy 

generator and air flow (1). 

 ( )( )( )  ( )( ) xptVsignxptVBHxbcxxm  +−+−−−−= sin5.05.0sin5.05.05.1
2

 , (1) 

where  m – mass, kg; 

 x – displacement, m; 

 ẋ – velocity, m·s-1; 

 c – spring stiffness, N·m-1; 

 b – linear generator damping, kg·s-1; 
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 V – air flow velocity, m·s-1; 

 p – velocity control actions harmonic angular frequency, s-1; 

 t –  time, s; 

 B – depth of body, m; 

 H – length of body, m; 

 ρ – air density, kg·m-3. 

Drag force is nonlinear as depends on relative plate-flow velocity square. Bifurcation analysis with 

p as the bifurcation parameter is done. Then, soft impacts were added to the system in form of two 

stoppers for additional mitigation of vibrations. So, the restoring force became piecewise linear (2)  

 ,  (2) 

where c1 – left/right stopper stiffness, N·m-1; 

 d1 – left stopper position, m; 

 d2 – right stopper position, m. 

Graphical representation of restoring forces considered in this paper is given in Fig. 1. 

 

Fig. 1. Restoring force graphs: 1 – linear, no stoppers; 2 – piecewise linear,  

stopper position ± 0.1 m; 3 – piecewise linear, stopper position ± 0.05 m  

Then bifurcation analysis was repeated for these two piecewise linear systems. Theory and the 

results are presented in the following sections.  

Theory and methodology 

Bifurcation analysis was done in Spring software [9] which is based on the theory of complete 

bifurcation groups [10]. The theory of complete bifurcation groups is a mathematical framework used 

to study bifurcations in dynamical systems, particularly in the context of differential equations. The 

bifurcation theory deals with the qualitative changes in the behaviour of a system as parameters are 

varied, and complete bifurcation groups provide a systematic way to understand and classify these 

changes comprehensively. In many dynamical systems, bifurcations occur in families, where different 

types of bifurcations can coexist and interact with each other. A complete bifurcation group is a set of 

all possible bifurcations that can occur for a given family of dynamical systems as parameters are varied. 

A feature of the approach used by the authors is the study, along with stable solutions, of unstable ones, 

which makes it possible to find the so-called rare attractors. The theory of complete bifurcation groups 

provides a powerful tool for understanding the rich variety of behaviours exhibited by dynamical 

systems as parameters are varied. 

Results and discussion 

Bifurcation analysis was done for the following system parameter set: m = 10 kg, c = 981 N·m-1, 

c1 = 9810 N·m-1, b = 10 kg·s-1, V = 10 m·s-1, B = H = 1 m, d1 = -0.05 m and -0.1 m, d2 = 0.05 m and 
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0.1 m, ρ = 1.25 kg·m-3, p = var. So, p was taken as a parameter to be varied. Results of bifurcation 

analysis are presented in Fig. 2 in form of amplitude response of the system vs velocity control actions 

harmonic angular frequency. Curve 1 corresponds to the nonlinear drag force and linear restoring force. 

In this case the bifurcation diagram is similar to a linear system – each parameter p value has only one 

possible periodic solution P1 with resonance at p ≈ 9.7 s-1.  

Curve 2 and Curve 3 represent bifurcation diagrams for the nonlinear drag force and piecewise 

linear restoring forces with stoppers at ± 0.1 m and ± 0.05 m correspondingly. In both cases amplitudes 

of oscillations in the resonant zone are lower with respect to ones corresponding to the system with the 

linear restoring force. The frequency response curves of piecewise linear systems slope downward what 

is common for nonlinear systems. As a result, at the p parameter range from 16 to 19.5 s-1 for the Curve 

2 and from 20 to 24 s-1 for the Curve 3 one can observe phenomena of multiplicity – there are two 

possible stable periodic solutions P1 with higher and lower amplitudes. For these ranges additional study 

of basins of attraction are needed. 

 

Fig. 2. Bifurcation diagrams: 1 – system with linear restoring force, no stoppers; 2 – system with 

piecewise linear restoring force, stoppers at ± 0.1 m; 3 – system with piecewise linear restoring force, 

stoppers at ± 0.05 m (black colour – stable solutions; red colour – unstable solutions) 

 

Fig. 3. Phase trajectories of resonant solutions: a – system with linear restoring force, p = 9.7 s-1;  

b – system with piecewise linear restoring force and stoppers at ± 0.1 m, p = 19 s-1; c – system with 

piecewise linear restoring force and stoppers at ± 0.05 m, p = 24 s-1 

Additionally, for Curve 3, periodic solution P1 is unstable in the range of p from 12 to 16 s-1. Here 

the stable periodic solution P2 is obtained. So, the presence of unstable solutions does not lead to the 

appearance of chaotic behavior of the system – in the studied range of the parameter p, one or two stable 

solutions correspond to each frequency. Phase trajectories of resonant periodic solutions for three cases 

of the restoring force are presented in Fig.3. So, displacements are limited by stoppers but velocities are 

almost the same. 
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Another interesting note can be made from the results of the study. As it can be observed in Fig. 2, 

the amplitudes of oscillations “distributed” more uniformly in cases of systems with piecewise linear 

restoring forces along all presented parameter p ranges.  

Conclusions 

1. The plate-flow interaction system is studied, which allows performing tasks of analysis, 

optimization and synthesis in the interaction of objects with fluids in a simplified way.  

2. If only the drag force is nonlinear dependent on the relative plate-flow velocity square, dynamical 

behaviour of the system is similar to one with nonlinearities. 

3. Adding the “soft” stoppers makes the system nonlinear. This limits the amplitude of oscillations, 

but velocities are almost the same. And such typical for nonlinear systems phenomenon as 

multiplicity is obtained. 

4. The amplitudes of oscillations “distributed” more uniformly in cases of systems with piecewise 

linear restoring forces along all studied range of the parameter p – velocity control actions angular 

frequency. 
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